This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. x e. ( kGenj ) , iff the preimage of x is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-kgen | ⊢ 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ckgen | ⊢ 𝑘Gen | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | 4 | cuni | ⊢ ∪ 𝑗 |
| 6 | 5 | cpw | ⊢ 𝒫 ∪ 𝑗 |
| 7 | vk | ⊢ 𝑘 | |
| 8 | crest | ⊢ ↾t | |
| 9 | 7 | cv | ⊢ 𝑘 |
| 10 | 4 9 8 | co | ⊢ ( 𝑗 ↾t 𝑘 ) |
| 11 | ccmp | ⊢ Comp | |
| 12 | 10 11 | wcel | ⊢ ( 𝑗 ↾t 𝑘 ) ∈ Comp |
| 13 | 3 | cv | ⊢ 𝑥 |
| 14 | 13 9 | cin | ⊢ ( 𝑥 ∩ 𝑘 ) |
| 15 | 14 10 | wcel | ⊢ ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) |
| 16 | 12 15 | wi | ⊢ ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) |
| 17 | 16 7 6 | wral | ⊢ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) |
| 18 | 17 3 6 | crab | ⊢ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } |
| 19 | 1 2 18 | cmpt | ⊢ ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ) |
| 20 | 0 19 | wceq | ⊢ 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } ) |