This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgencmp | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ( J |`t K ) = ( ( kGen ` J ) |`t K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgenftop | |- ( J e. Top -> ( kGen ` J ) e. Top ) |
|
| 2 | 1 | adantr | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ( kGen ` J ) e. Top ) |
| 3 | kgenss | |- ( J e. Top -> J C_ ( kGen ` J ) ) |
|
| 4 | 3 | adantr | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> J C_ ( kGen ` J ) ) |
| 5 | ssrest | |- ( ( ( kGen ` J ) e. Top /\ J C_ ( kGen ` J ) ) -> ( J |`t K ) C_ ( ( kGen ` J ) |`t K ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ( J |`t K ) C_ ( ( kGen ` J ) |`t K ) ) |
| 7 | cmptop | |- ( ( J |`t K ) e. Comp -> ( J |`t K ) e. Top ) |
|
| 8 | 7 | adantl | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ( J |`t K ) e. Top ) |
| 9 | restrcl | |- ( ( J |`t K ) e. Top -> ( J e. _V /\ K e. _V ) ) |
|
| 10 | 9 | simprd | |- ( ( J |`t K ) e. Top -> K e. _V ) |
| 11 | 8 10 | syl | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> K e. _V ) |
| 12 | restval | |- ( ( ( kGen ` J ) e. Top /\ K e. _V ) -> ( ( kGen ` J ) |`t K ) = ran ( x e. ( kGen ` J ) |-> ( x i^i K ) ) ) |
|
| 13 | 2 11 12 | syl2anc | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ( ( kGen ` J ) |`t K ) = ran ( x e. ( kGen ` J ) |-> ( x i^i K ) ) ) |
| 14 | simpr | |- ( ( ( J e. Top /\ ( J |`t K ) e. Comp ) /\ x e. ( kGen ` J ) ) -> x e. ( kGen ` J ) ) |
|
| 15 | simplr | |- ( ( ( J e. Top /\ ( J |`t K ) e. Comp ) /\ x e. ( kGen ` J ) ) -> ( J |`t K ) e. Comp ) |
|
| 16 | kgeni | |- ( ( x e. ( kGen ` J ) /\ ( J |`t K ) e. Comp ) -> ( x i^i K ) e. ( J |`t K ) ) |
|
| 17 | 14 15 16 | syl2anc | |- ( ( ( J e. Top /\ ( J |`t K ) e. Comp ) /\ x e. ( kGen ` J ) ) -> ( x i^i K ) e. ( J |`t K ) ) |
| 18 | 17 | fmpttd | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ( x e. ( kGen ` J ) |-> ( x i^i K ) ) : ( kGen ` J ) --> ( J |`t K ) ) |
| 19 | 18 | frnd | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ran ( x e. ( kGen ` J ) |-> ( x i^i K ) ) C_ ( J |`t K ) ) |
| 20 | 13 19 | eqsstrd | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ( ( kGen ` J ) |`t K ) C_ ( J |`t K ) ) |
| 21 | 6 20 | eqssd | |- ( ( J e. Top /\ ( J |`t K ) e. Comp ) -> ( J |`t K ) = ( ( kGen ` J ) |`t K ) ) |