This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joinle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| joinle.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| joinle.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| joinle.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| joinle.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| joinle.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| joinle.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) | ||
| Assertion | joinle | ⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍 ) ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joinle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | joinle.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | joinle.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | joinle.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | joinle.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | joinle.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | joinle.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) | |
| 9 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 ≤ 𝑧 ↔ 𝑋 ≤ 𝑍 ) ) | |
| 10 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑌 ≤ 𝑧 ↔ 𝑌 ≤ 𝑍 ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ↔ ( 𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍 ) ) ) |
| 12 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) ) | |
| 13 | 11 12 | imbi12d | ⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) ) ) |
| 14 | 1 2 3 4 5 6 8 | joinlem | ⊢ ( 𝜑 → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) ) |
| 15 | 14 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) |
| 16 | 13 15 7 | rspcdva | ⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) ) |
| 17 | 1 2 3 4 5 6 8 | lejoin1 | ⊢ ( 𝜑 → 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 18 | 1 3 4 5 6 8 | joincl | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 19 | 1 2 | postr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
| 20 | 4 5 18 7 19 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
| 21 | 17 20 | mpand | ⊢ ( 𝜑 → ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 → 𝑋 ≤ 𝑍 ) ) |
| 22 | 1 2 3 4 5 6 8 | lejoin2 | ⊢ ( 𝜑 → 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 23 | 1 2 | postr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) → 𝑌 ≤ 𝑍 ) ) |
| 24 | 4 6 18 7 23 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ∧ ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) → 𝑌 ≤ 𝑍 ) ) |
| 25 | 22 24 | mpand | ⊢ ( 𝜑 → ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 → 𝑌 ≤ 𝑍 ) ) |
| 26 | 21 25 | jcad | ⊢ ( 𝜑 → ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 → ( 𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍 ) ) ) |
| 27 | 16 26 | impbid | ⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍 ) ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) ) |