This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joincl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joincl.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| joincl.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| joincl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| joincl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| joincl.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) | ||
| Assertion | joincl | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joincl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joincl.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | joincl.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 4 | joincl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | joincl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | joincl.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) | |
| 7 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 8 | 7 2 3 4 5 | joinval | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 9 | 7 2 3 4 5 | joindef | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ↔ { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 10 | 6 9 | mpbid | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ∈ dom ( lub ‘ 𝐾 ) ) |
| 11 | 1 7 3 10 | lubcl | ⊢ ( 𝜑 → ( ( lub ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ∈ 𝐵 ) |
| 12 | 8 11 | eqeltrd | ⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |