This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A join's first argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joinval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| joinval2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| joinval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| joinval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| joinval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| joinlem.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) | ||
| Assertion | lejoin1 | ⊢ ( 𝜑 → 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joinval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | joinval2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | joinval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | joinval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | joinval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | joinlem.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) | |
| 8 | 1 2 3 4 5 6 7 | joinlem | ⊢ ( 𝜑 → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) → ( 𝑋 ∨ 𝑌 ) ≤ 𝑧 ) ) ) |
| 9 | 8 | simplld | ⊢ ( 𝜑 → 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ) |