This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinle.b | |- B = ( Base ` K ) |
|
| joinle.l | |- .<_ = ( le ` K ) |
||
| joinle.j | |- .\/ = ( join ` K ) |
||
| joinle.k | |- ( ph -> K e. Poset ) |
||
| joinle.x | |- ( ph -> X e. B ) |
||
| joinle.y | |- ( ph -> Y e. B ) |
||
| joinle.z | |- ( ph -> Z e. B ) |
||
| joinle.e | |- ( ph -> <. X , Y >. e. dom .\/ ) |
||
| Assertion | joinle | |- ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) <-> ( X .\/ Y ) .<_ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinle.b | |- B = ( Base ` K ) |
|
| 2 | joinle.l | |- .<_ = ( le ` K ) |
|
| 3 | joinle.j | |- .\/ = ( join ` K ) |
|
| 4 | joinle.k | |- ( ph -> K e. Poset ) |
|
| 5 | joinle.x | |- ( ph -> X e. B ) |
|
| 6 | joinle.y | |- ( ph -> Y e. B ) |
|
| 7 | joinle.z | |- ( ph -> Z e. B ) |
|
| 8 | joinle.e | |- ( ph -> <. X , Y >. e. dom .\/ ) |
|
| 9 | breq2 | |- ( z = Z -> ( X .<_ z <-> X .<_ Z ) ) |
|
| 10 | breq2 | |- ( z = Z -> ( Y .<_ z <-> Y .<_ Z ) ) |
|
| 11 | 9 10 | anbi12d | |- ( z = Z -> ( ( X .<_ z /\ Y .<_ z ) <-> ( X .<_ Z /\ Y .<_ Z ) ) ) |
| 12 | breq2 | |- ( z = Z -> ( ( X .\/ Y ) .<_ z <-> ( X .\/ Y ) .<_ Z ) ) |
|
| 13 | 11 12 | imbi12d | |- ( z = Z -> ( ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) <-> ( ( X .<_ Z /\ Y .<_ Z ) -> ( X .\/ Y ) .<_ Z ) ) ) |
| 14 | 1 2 3 4 5 6 8 | joinlem | |- ( ph -> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) |
| 15 | 14 | simprd | |- ( ph -> A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) |
| 16 | 13 15 7 | rspcdva | |- ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) -> ( X .\/ Y ) .<_ Z ) ) |
| 17 | 1 2 3 4 5 6 8 | lejoin1 | |- ( ph -> X .<_ ( X .\/ Y ) ) |
| 18 | 1 3 4 5 6 8 | joincl | |- ( ph -> ( X .\/ Y ) e. B ) |
| 19 | 1 2 | postr | |- ( ( K e. Poset /\ ( X e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( X .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> X .<_ Z ) ) |
| 20 | 4 5 18 7 19 | syl13anc | |- ( ph -> ( ( X .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> X .<_ Z ) ) |
| 21 | 17 20 | mpand | |- ( ph -> ( ( X .\/ Y ) .<_ Z -> X .<_ Z ) ) |
| 22 | 1 2 3 4 5 6 8 | lejoin2 | |- ( ph -> Y .<_ ( X .\/ Y ) ) |
| 23 | 1 2 | postr | |- ( ( K e. Poset /\ ( Y e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( Y .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> Y .<_ Z ) ) |
| 24 | 4 6 18 7 23 | syl13anc | |- ( ph -> ( ( Y .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> Y .<_ Z ) ) |
| 25 | 22 24 | mpand | |- ( ph -> ( ( X .\/ Y ) .<_ Z -> Y .<_ Z ) ) |
| 26 | 21 25 | jcad | |- ( ph -> ( ( X .\/ Y ) .<_ Z -> ( X .<_ Z /\ Y .<_ Z ) ) ) |
| 27 | 16 26 | impbid | |- ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) <-> ( X .\/ Y ) .<_ Z ) ) |