This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunxpf.1 | ⊢ Ⅎ 𝑦 𝐶 | |
| iunxpf.2 | ⊢ Ⅎ 𝑧 𝐶 | ||
| iunxpf.3 | ⊢ Ⅎ 𝑥 𝐷 | ||
| iunxpf.4 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → 𝐶 = 𝐷 ) | ||
| Assertion | iunxpf | ⊢ ∪ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpf.1 | ⊢ Ⅎ 𝑦 𝐶 | |
| 2 | iunxpf.2 | ⊢ Ⅎ 𝑧 𝐶 | |
| 3 | iunxpf.3 | ⊢ Ⅎ 𝑥 𝐷 | |
| 4 | iunxpf.4 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → 𝐶 = 𝐷 ) | |
| 5 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑤 ∈ 𝐶 |
| 6 | 2 | nfcri | ⊢ Ⅎ 𝑧 𝑤 ∈ 𝐶 |
| 7 | 3 | nfcri | ⊢ Ⅎ 𝑥 𝑤 ∈ 𝐷 |
| 8 | 4 | eleq2d | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑤 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷 ) ) |
| 9 | 5 6 7 8 | rexxpf | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝑤 ∈ 𝐶 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑤 ∈ 𝐷 ) |
| 10 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 ↔ ∃ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝑤 ∈ 𝐶 ) | |
| 11 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃ 𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ) | |
| 12 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃ 𝑧 ∈ 𝐵 𝑤 ∈ 𝐷 ) | |
| 13 | 12 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑤 ∈ 𝐷 ) |
| 14 | 11 13 | bitri | ⊢ ( 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑤 ∈ 𝐷 ) |
| 15 | 9 10 14 | 3bitr4i | ⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 ↔ 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ) |
| 16 | 15 | eqriv | ⊢ ∪ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |