This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunxpf.1 | |- F/_ y C |
|
| iunxpf.2 | |- F/_ z C |
||
| iunxpf.3 | |- F/_ x D |
||
| iunxpf.4 | |- ( x = <. y , z >. -> C = D ) |
||
| Assertion | iunxpf | |- U_ x e. ( A X. B ) C = U_ y e. A U_ z e. B D |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpf.1 | |- F/_ y C |
|
| 2 | iunxpf.2 | |- F/_ z C |
|
| 3 | iunxpf.3 | |- F/_ x D |
|
| 4 | iunxpf.4 | |- ( x = <. y , z >. -> C = D ) |
|
| 5 | 1 | nfcri | |- F/ y w e. C |
| 6 | 2 | nfcri | |- F/ z w e. C |
| 7 | 3 | nfcri | |- F/ x w e. D |
| 8 | 4 | eleq2d | |- ( x = <. y , z >. -> ( w e. C <-> w e. D ) ) |
| 9 | 5 6 7 8 | rexxpf | |- ( E. x e. ( A X. B ) w e. C <-> E. y e. A E. z e. B w e. D ) |
| 10 | eliun | |- ( w e. U_ x e. ( A X. B ) C <-> E. x e. ( A X. B ) w e. C ) |
|
| 11 | eliun | |- ( w e. U_ y e. A U_ z e. B D <-> E. y e. A w e. U_ z e. B D ) |
|
| 12 | eliun | |- ( w e. U_ z e. B D <-> E. z e. B w e. D ) |
|
| 13 | 12 | rexbii | |- ( E. y e. A w e. U_ z e. B D <-> E. y e. A E. z e. B w e. D ) |
| 14 | 11 13 | bitri | |- ( w e. U_ y e. A U_ z e. B D <-> E. y e. A E. z e. B w e. D ) |
| 15 | 9 10 14 | 3bitr4i | |- ( w e. U_ x e. ( A X. B ) C <-> w e. U_ y e. A U_ z e. B D ) |
| 16 | 15 | eqriv | |- U_ x e. ( A X. B ) C = U_ y e. A U_ z e. B D |