This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunxiun | ⊢ ∪ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ) | |
| 2 | 1 | anbi1i | ⊢ ( ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
| 3 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) | |
| 4 | 2 3 | bitr4i | ⊢ ( ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
| 6 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
| 8 | df-rex | ⊢ ( ∃ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝑧 ∈ 𝐶 ↔ ∃ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) | |
| 9 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ) | |
| 10 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑧 ∈ 𝐶 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) | |
| 11 | 9 10 | bitri | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
| 12 | 11 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
| 13 | 7 8 12 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝑧 ∈ 𝐶 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) |
| 14 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ↔ ∃ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝑧 ∈ 𝐶 ) | |
| 15 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 ↔ 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ) |
| 17 | 16 | eqriv | ⊢ ∪ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 |