This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship involving union and indexed intersection. Exercise 23 of Enderton p. 33. (Contributed by NM, 25-Nov-2003) (Proof shortened by Mario Carneiro, 17-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinuni | ⊢ ( 𝐴 ∪ ∩ 𝐵 ) = ∩ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.32v | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 ∨ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) ) | |
| 2 | elun | ⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥 ) ) |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 4 | elint2 | ⊢ ( 𝑦 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) |
| 6 | 5 | orbi2i | ⊢ ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∨ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) ) |
| 7 | 1 3 6 | 3bitr4ri | ⊢ ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) ) |
| 8 | 7 | abbii | ⊢ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) } |
| 9 | df-un | ⊢ ( 𝐴 ∪ ∩ 𝐵 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵 ) } | |
| 10 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ∪ 𝑥 ) } | |
| 11 | 8 9 10 | 3eqtr4i | ⊢ ( 𝐴 ∪ ∩ 𝐵 ) = ∩ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) |