This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed union where some terms are the empty set. See iunxdif2 . (Contributed by Thierry Arnoux, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iunxdif3.1 | ⊢ Ⅎ 𝑥 𝐸 | |
| Assertion | iunxdif3 | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxdif3.1 | ⊢ Ⅎ 𝑥 𝐸 | |
| 2 | inss2 | ⊢ ( 𝐴 ∩ 𝐸 ) ⊆ 𝐸 | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 4 | 3 1 | nfin | ⊢ Ⅎ 𝑥 ( 𝐴 ∩ 𝐸 ) |
| 5 | 4 1 | ssrexf | ⊢ ( ( 𝐴 ∩ 𝐸 ) ⊆ 𝐸 → ( ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐸 𝑦 ∈ 𝐵 ) ) |
| 6 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝑦 ∈ 𝐵 ) | |
| 7 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐸 𝐵 ↔ ∃ 𝑥 ∈ 𝐸 𝑦 ∈ 𝐵 ) | |
| 8 | 5 6 7 | 3imtr4g | ⊢ ( ( 𝐴 ∩ 𝐸 ) ⊆ 𝐸 → ( 𝑦 ∈ ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐸 𝐵 ) ) |
| 9 | 8 | ssrdv | ⊢ ( ( 𝐴 ∩ 𝐸 ) ⊆ 𝐸 → ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ⊆ ∪ 𝑥 ∈ 𝐸 𝐵 ) |
| 10 | 2 9 | ax-mp | ⊢ ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ⊆ ∪ 𝑥 ∈ 𝐸 𝐵 |
| 11 | iuneq2 | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐸 𝐵 = ∪ 𝑥 ∈ 𝐸 ∅ ) | |
| 12 | iun0 | ⊢ ∪ 𝑥 ∈ 𝐸 ∅ = ∅ | |
| 13 | 11 12 | eqtrdi | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐸 𝐵 = ∅ ) |
| 14 | 10 13 | sseqtrid | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ⊆ ∅ ) |
| 15 | ss0 | ⊢ ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ⊆ ∅ → ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 = ∅ ) | |
| 16 | 14 15 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 = ∅ ) |
| 17 | 16 | uneq1d | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ( ∅ ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) ) |
| 18 | iunxun | ⊢ ∪ 𝑥 ∈ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) 𝐵 = ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) | |
| 19 | inundif | ⊢ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 | |
| 20 | 19 | nfth | ⊢ Ⅎ 𝑥 ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 |
| 21 | 3 1 | nfdif | ⊢ Ⅎ 𝑥 ( 𝐴 ∖ 𝐸 ) |
| 22 | 4 21 | nfun | ⊢ Ⅎ 𝑥 ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) |
| 23 | id | ⊢ ( ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 → ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 ) | |
| 24 | eqidd | ⊢ ( ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 → 𝐵 = 𝐵 ) | |
| 25 | 20 22 3 23 24 | iuneq12df | ⊢ ( ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) = 𝐴 → ∪ 𝑥 ∈ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 26 | 19 25 | ax-mp | ⊢ ∪ 𝑥 ∈ ( ( 𝐴 ∩ 𝐸 ) ∪ ( 𝐴 ∖ 𝐸 ) ) 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 |
| 27 | 18 26 | eqtr3i | ⊢ ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ∪ 𝑥 ∈ 𝐴 𝐵 |
| 28 | 27 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ( ∪ 𝑥 ∈ ( 𝐴 ∩ 𝐸 ) 𝐵 ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 29 | uncom | ⊢ ( ∅ ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ( ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ∪ ∅ ) | |
| 30 | un0 | ⊢ ( ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ∪ ∅ ) = ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 | |
| 31 | 29 30 | eqtri | ⊢ ( ∅ ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 |
| 32 | 31 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ( ∅ ∪ ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) = ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 ) |
| 33 | 17 28 32 | 3eqtr3rd | ⊢ ( ∀ 𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ ( 𝐴 ∖ 𝐸 ) 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) |