This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iunxdif2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
| Assertion | iunxdif2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxdif2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
| 2 | iunss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ) | |
| 3 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 4 | iunss1 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 → ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷 ) | |
| 5 | 3 4 | ax-mp | ⊢ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷 |
| 6 | 1 | cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐴 𝐷 |
| 7 | 5 6 | sseqtrri | ⊢ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 |
| 8 | 2 7 | jctil | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ⊆ 𝐷 → ( ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ) ) |
| 9 | eqss | ⊢ ( ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ( ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |