This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed union where some terms are the empty set. See iunxdif2 . (Contributed by Thierry Arnoux, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iunxdif3.1 | |- F/_ x E |
|
| Assertion | iunxdif3 | |- ( A. x e. E B = (/) -> U_ x e. ( A \ E ) B = U_ x e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxdif3.1 | |- F/_ x E |
|
| 2 | inss2 | |- ( A i^i E ) C_ E |
|
| 3 | nfcv | |- F/_ x A |
|
| 4 | 3 1 | nfin | |- F/_ x ( A i^i E ) |
| 5 | 4 1 | ssrexf | |- ( ( A i^i E ) C_ E -> ( E. x e. ( A i^i E ) y e. B -> E. x e. E y e. B ) ) |
| 6 | eliun | |- ( y e. U_ x e. ( A i^i E ) B <-> E. x e. ( A i^i E ) y e. B ) |
|
| 7 | eliun | |- ( y e. U_ x e. E B <-> E. x e. E y e. B ) |
|
| 8 | 5 6 7 | 3imtr4g | |- ( ( A i^i E ) C_ E -> ( y e. U_ x e. ( A i^i E ) B -> y e. U_ x e. E B ) ) |
| 9 | 8 | ssrdv | |- ( ( A i^i E ) C_ E -> U_ x e. ( A i^i E ) B C_ U_ x e. E B ) |
| 10 | 2 9 | ax-mp | |- U_ x e. ( A i^i E ) B C_ U_ x e. E B |
| 11 | iuneq2 | |- ( A. x e. E B = (/) -> U_ x e. E B = U_ x e. E (/) ) |
|
| 12 | iun0 | |- U_ x e. E (/) = (/) |
|
| 13 | 11 12 | eqtrdi | |- ( A. x e. E B = (/) -> U_ x e. E B = (/) ) |
| 14 | 10 13 | sseqtrid | |- ( A. x e. E B = (/) -> U_ x e. ( A i^i E ) B C_ (/) ) |
| 15 | ss0 | |- ( U_ x e. ( A i^i E ) B C_ (/) -> U_ x e. ( A i^i E ) B = (/) ) |
|
| 16 | 14 15 | syl | |- ( A. x e. E B = (/) -> U_ x e. ( A i^i E ) B = (/) ) |
| 17 | 16 | uneq1d | |- ( A. x e. E B = (/) -> ( U_ x e. ( A i^i E ) B u. U_ x e. ( A \ E ) B ) = ( (/) u. U_ x e. ( A \ E ) B ) ) |
| 18 | iunxun | |- U_ x e. ( ( A i^i E ) u. ( A \ E ) ) B = ( U_ x e. ( A i^i E ) B u. U_ x e. ( A \ E ) B ) |
|
| 19 | inundif | |- ( ( A i^i E ) u. ( A \ E ) ) = A |
|
| 20 | 19 | nfth | |- F/ x ( ( A i^i E ) u. ( A \ E ) ) = A |
| 21 | 3 1 | nfdif | |- F/_ x ( A \ E ) |
| 22 | 4 21 | nfun | |- F/_ x ( ( A i^i E ) u. ( A \ E ) ) |
| 23 | id | |- ( ( ( A i^i E ) u. ( A \ E ) ) = A -> ( ( A i^i E ) u. ( A \ E ) ) = A ) |
|
| 24 | eqidd | |- ( ( ( A i^i E ) u. ( A \ E ) ) = A -> B = B ) |
|
| 25 | 20 22 3 23 24 | iuneq12df | |- ( ( ( A i^i E ) u. ( A \ E ) ) = A -> U_ x e. ( ( A i^i E ) u. ( A \ E ) ) B = U_ x e. A B ) |
| 26 | 19 25 | ax-mp | |- U_ x e. ( ( A i^i E ) u. ( A \ E ) ) B = U_ x e. A B |
| 27 | 18 26 | eqtr3i | |- ( U_ x e. ( A i^i E ) B u. U_ x e. ( A \ E ) B ) = U_ x e. A B |
| 28 | 27 | a1i | |- ( A. x e. E B = (/) -> ( U_ x e. ( A i^i E ) B u. U_ x e. ( A \ E ) B ) = U_ x e. A B ) |
| 29 | uncom | |- ( (/) u. U_ x e. ( A \ E ) B ) = ( U_ x e. ( A \ E ) B u. (/) ) |
|
| 30 | un0 | |- ( U_ x e. ( A \ E ) B u. (/) ) = U_ x e. ( A \ E ) B |
|
| 31 | 29 30 | eqtri | |- ( (/) u. U_ x e. ( A \ E ) B ) = U_ x e. ( A \ E ) B |
| 32 | 31 | a1i | |- ( A. x e. E B = (/) -> ( (/) u. U_ x e. ( A \ E ) B ) = U_ x e. ( A \ E ) B ) |
| 33 | 17 28 32 | 3eqtr3rd | |- ( A. x e. E B = (/) -> U_ x e. ( A \ E ) B = U_ x e. A B ) |