This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iuneq12df.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| iuneq12df.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| iuneq12df.3 | ⊢ Ⅎ 𝑥 𝐵 | ||
| iuneq12df.4 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| iuneq12df.5 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | iuneq12df | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12df.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | iuneq12df.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | iuneq12df.3 | ⊢ Ⅎ 𝑥 𝐵 | |
| 4 | iuneq12df.4 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 5 | iuneq12df.5 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 6 | 5 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 7 | 1 2 3 4 6 | rexeqbid | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) ) |
| 8 | 7 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) ) |
| 9 | abbi | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 } ) | |
| 10 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } | |
| 11 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐵 𝐷 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 } | |
| 12 | 9 10 11 | 3eqtr4g | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐷 ) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |
| 13 | 8 12 | syl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ) |