This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | iuncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | difin | ⊢ ( 𝑋 ∖ ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) ) = ( 𝑋 ∖ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) | |
| 3 | iundif2 | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) = ( 𝑋 ∖ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) | |
| 4 | 2 3 | eqtr4i | ⊢ ( 𝑋 ∖ ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) ) = ∪ 𝑥 ∈ 𝐴 ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) |
| 5 | 1 | cldss | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐵 ⊆ 𝑋 ) |
| 6 | dfss4 | ⊢ ( 𝐵 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) = 𝐵 ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) = 𝐵 ) |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) = 𝐵 ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) = 𝐵 ) |
| 10 | iuneq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) = 𝐵 → ∪ 𝑥 ∈ 𝐴 ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) = ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ 𝑥 ∈ 𝐴 ( 𝑋 ∖ ( 𝑋 ∖ 𝐵 ) ) = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 12 | 4 11 | eqtrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) ) = ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 13 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) | |
| 14 | 1 | cldopn | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) |
| 15 | 14 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) |
| 16 | 1 | riinopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) ∈ 𝐽 ) |
| 17 | 15 16 | syl3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) ∈ 𝐽 ) |
| 18 | 1 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) ∈ 𝐽 ) → ( 𝑋 ∖ ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 19 | 13 17 18 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 ( 𝑋 ∖ 𝐵 ) ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 20 | 12 19 | eqeltrrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |