This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1open.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | riinopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | riin0 | ⊢ ( 𝐴 = ∅ → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = 𝑋 ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ∧ 𝐴 = ∅ ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = 𝑋 ) |
| 4 | simpl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ∧ 𝐴 = ∅ ) → 𝐽 ∈ Top ) | |
| 5 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ∧ 𝐴 = ∅ ) → 𝑋 ∈ 𝐽 ) |
| 7 | 3 6 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ∧ 𝐴 = ∅ ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ 𝐽 ) |
| 8 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽 ) → 𝐵 ⊆ 𝑋 ) |
| 9 | 8 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ) → ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋 ) ) |
| 11 | 10 | ralimdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋 ) ) |
| 12 | 11 | 3impia | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋 ) |
| 13 | riinn0 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋 ∧ 𝐴 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 𝐵 ) | |
| 14 | 12 13 | sylan | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ∧ 𝐴 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 15 | iinopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) | |
| 16 | 15 | 3exp2 | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ Fin → ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) ) ) |
| 17 | 16 | com34 | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ Fin → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ) ) ) |
| 18 | 17 | 3imp1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ∧ 𝐴 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) |
| 19 | 14 18 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) ∧ 𝐴 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ 𝐽 ) |
| 20 | 7 19 | pm2.61dane | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ 𝐽 ) |