This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domani is negligible, the function is integrable and the integral is 0. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgvol0.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| itgvol0.2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| itgvol0.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | itgvol0 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ∧ ∫ 𝐴 𝐵 d 𝑥 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgvol0.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | itgvol0.2 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 3 | itgvol0.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ 𝐵 ) = ∅ | |
| 5 | iblempty | ⊢ ∅ ∈ 𝐿1 | |
| 6 | 4 5 | eqeltri | ⊢ ( 𝑥 ∈ ∅ ↦ 𝐵 ) ∈ 𝐿1 |
| 7 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ∅ ⊆ 𝐴 ) |
| 9 | difssd | ⊢ ( 𝜑 → ( 𝐴 ∖ ∅ ) ⊆ 𝐴 ) | |
| 10 | ovolssnul | ⊢ ( ( ( 𝐴 ∖ ∅ ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( 𝐴 ∖ ∅ ) ) = 0 ) | |
| 11 | 9 1 2 10 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∖ ∅ ) ) = 0 ) |
| 12 | 8 1 11 3 | itgss3 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ∅ ↦ 𝐵 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) ∧ ∫ ∅ 𝐵 d 𝑥 = ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 13 | 12 | simpld | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ∅ ↦ 𝐵 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) ) |
| 14 | 6 13 | mpbii | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 15 | 12 | simprd | ⊢ ( 𝜑 → ∫ ∅ 𝐵 d 𝑥 = ∫ 𝐴 𝐵 d 𝑥 ) |
| 16 | itg0 | ⊢ ∫ ∅ 𝐵 d 𝑥 = 0 | |
| 17 | 15 16 | eqtr3di | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = 0 ) |
| 18 | 14 17 | jca | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ∧ ∫ 𝐴 𝐵 d 𝑥 = 0 ) ) |