This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domani is negligible, the function is integrable and the integral is 0. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgvol0.1 | |- ( ph -> A C_ RR ) |
|
| itgvol0.2 | |- ( ph -> ( vol* ` A ) = 0 ) |
||
| itgvol0.3 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
||
| Assertion | itgvol0 | |- ( ph -> ( ( x e. A |-> B ) e. L^1 /\ S. A B _d x = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgvol0.1 | |- ( ph -> A C_ RR ) |
|
| 2 | itgvol0.2 | |- ( ph -> ( vol* ` A ) = 0 ) |
|
| 3 | itgvol0.3 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 4 | mpt0 | |- ( x e. (/) |-> B ) = (/) |
|
| 5 | iblempty | |- (/) e. L^1 |
|
| 6 | 4 5 | eqeltri | |- ( x e. (/) |-> B ) e. L^1 |
| 7 | 0ss | |- (/) C_ A |
|
| 8 | 7 | a1i | |- ( ph -> (/) C_ A ) |
| 9 | difssd | |- ( ph -> ( A \ (/) ) C_ A ) |
|
| 10 | ovolssnul | |- ( ( ( A \ (/) ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( A \ (/) ) ) = 0 ) |
|
| 11 | 9 1 2 10 | syl3anc | |- ( ph -> ( vol* ` ( A \ (/) ) ) = 0 ) |
| 12 | 8 1 11 3 | itgss3 | |- ( ph -> ( ( ( x e. (/) |-> B ) e. L^1 <-> ( x e. A |-> B ) e. L^1 ) /\ S. (/) B _d x = S. A B _d x ) ) |
| 13 | 12 | simpld | |- ( ph -> ( ( x e. (/) |-> B ) e. L^1 <-> ( x e. A |-> B ) e. L^1 ) ) |
| 14 | 6 13 | mpbii | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
| 15 | 12 | simprd | |- ( ph -> S. (/) B _d x = S. A B _d x ) |
| 16 | itg0 | |- S. (/) B _d x = 0 |
|
| 17 | 15 16 | eqtr3di | |- ( ph -> S. A B _d x = 0 ) |
| 18 | 14 17 | jca | |- ( ph -> ( ( x e. A |-> B ) e. L^1 /\ S. A B _d x = 0 ) ) |