This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itggt0.1 | |- ( ph -> 0 < ( vol ` A ) ) |
|
| itggt0.2 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
||
| itggt0.3 | |- ( ( ph /\ x e. A ) -> B e. RR+ ) |
||
| Assertion | itggt0 | |- ( ph -> 0 < S. A B _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itggt0.1 | |- ( ph -> 0 < ( vol ` A ) ) |
|
| 2 | itggt0.2 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
|
| 3 | itggt0.3 | |- ( ( ph /\ x e. A ) -> B e. RR+ ) |
|
| 4 | iblmbf | |- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
|
| 5 | 2 4 | syl | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
| 6 | 5 3 | mbfdm2 | |- ( ph -> A e. dom vol ) |
| 7 | 3 | rpred | |- ( ( ph /\ x e. A ) -> B e. RR ) |
| 8 | 3 | rpge0d | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
| 9 | elrege0 | |- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
|
| 10 | 7 8 9 | sylanbrc | |- ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |
| 11 | 0e0icopnf | |- 0 e. ( 0 [,) +oo ) |
|
| 12 | 11 | a1i | |- ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) |
| 13 | 10 12 | ifclda | |- ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 15 | 14 | fmpttd | |- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
| 16 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 17 | 6 16 | syl | |- ( ph -> A C_ RR ) |
| 18 | rembl | |- RR e. dom vol |
|
| 19 | 18 | a1i | |- ( ph -> RR e. dom vol ) |
| 20 | 13 | adantr | |- ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 21 | eldifn | |- ( x e. ( RR \ A ) -> -. x e. A ) |
|
| 22 | 21 | adantl | |- ( ( ph /\ x e. ( RR \ A ) ) -> -. x e. A ) |
| 23 | 22 | iffalsed | |- ( ( ph /\ x e. ( RR \ A ) ) -> if ( x e. A , B , 0 ) = 0 ) |
| 24 | iftrue | |- ( x e. A -> if ( x e. A , B , 0 ) = B ) |
|
| 25 | 24 | mpteq2ia | |- ( x e. A |-> if ( x e. A , B , 0 ) ) = ( x e. A |-> B ) |
| 26 | 25 5 | eqeltrid | |- ( ph -> ( x e. A |-> if ( x e. A , B , 0 ) ) e. MblFn ) |
| 27 | 17 19 20 23 26 | mbfss | |- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) e. MblFn ) |
| 28 | 3 | rpgt0d | |- ( ( ph /\ x e. A ) -> 0 < B ) |
| 29 | 17 | sselda | |- ( ( ph /\ x e. A ) -> x e. RR ) |
| 30 | 24 | adantl | |- ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) = B ) |
| 31 | 30 3 | eqeltrd | |- ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) e. RR+ ) |
| 32 | eqid | |- ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) |
|
| 33 | 32 | fvmpt2 | |- ( ( x e. RR /\ if ( x e. A , B , 0 ) e. RR+ ) -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) = if ( x e. A , B , 0 ) ) |
| 34 | 29 31 33 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) = if ( x e. A , B , 0 ) ) |
| 35 | 34 30 | eqtrd | |- ( ( ph /\ x e. A ) -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) = B ) |
| 36 | 28 35 | breqtrrd | |- ( ( ph /\ x e. A ) -> 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) |
| 37 | 36 | ralrimiva | |- ( ph -> A. x e. A 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) |
| 38 | nfcv | |- F/_ x 0 |
|
| 39 | nfcv | |- F/_ x < |
|
| 40 | nffvmpt1 | |- F/_ x ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) |
|
| 41 | 38 39 40 | nfbr | |- F/ x 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) |
| 42 | nfv | |- F/ y 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) |
|
| 43 | fveq2 | |- ( y = x -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) = ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) |
|
| 44 | 43 | breq2d | |- ( y = x -> ( 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) <-> 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) ) |
| 45 | 41 42 44 | cbvralw | |- ( A. y e. A 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) <-> A. x e. A 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) |
| 46 | 37 45 | sylibr | |- ( ph -> A. y e. A 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) ) |
| 47 | 46 | r19.21bi | |- ( ( ph /\ y e. A ) -> 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) ) |
| 48 | 6 1 15 27 47 | itg2gt0 | |- ( ph -> 0 < ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 49 | 7 2 8 | itgposval | |- ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 50 | 48 49 | breqtrrd | |- ( ph -> 0 < S. A B _d x ) |