This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for elementhood in the set L . (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itg2val.1 | ⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| Assertion | itg2lr | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ∈ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | ⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| 2 | eqid | ⊢ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝐺 ) | |
| 3 | breq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∘r ≤ 𝐹 ↔ 𝐺 ∘r ≤ 𝐹 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( ∫1 ‘ 𝑔 ) = ( ∫1 ‘ 𝐺 ) ) | |
| 5 | 4 | eqeq2d | ⊢ ( 𝑔 = 𝐺 → ( ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ↔ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝐺 ) ) ) |
| 6 | 3 5 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ) ↔ ( 𝐺 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝐺 ) ) ) ) |
| 7 | 6 | rspcev | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ ( 𝐺 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝐺 ) ) ) → ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ) ) |
| 8 | 2 7 | mpanr2 | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ) ) |
| 9 | 1 | itg2l | ⊢ ( ( ∫1 ‘ 𝐺 ) ∈ 𝐿 ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ ( ∫1 ‘ 𝐺 ) = ( ∫1 ‘ 𝑔 ) ) ) |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ∈ 𝐿 ) |