This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcovalsuc | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 𝐹 ∈ 𝑉 ) | |
| 2 | itcoval | ⊢ ( 𝐹 ∈ 𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) | |
| 3 | 2 | fveq1d | ⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ ( 𝑌 + 1 ) ) ) |
| 4 | 1 3 | syl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ ( 𝑌 + 1 ) ) ) |
| 5 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 6 | simp2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 𝑌 ∈ ℕ0 ) | |
| 7 | eqid | ⊢ ( 𝑌 + 1 ) = ( 𝑌 + 1 ) | |
| 8 | 2 | adantr | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) |
| 9 | 8 | fveq1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 𝑌 ) ) |
| 10 | 9 | eqeq1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ↔ ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 𝑌 ) = 𝐺 ) ) |
| 11 | 10 | biimp3a | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 𝑌 ) = 𝐺 ) |
| 12 | eqidd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) | |
| 13 | nn0p1gt0 | ⊢ ( 𝑌 ∈ ℕ0 → 0 < ( 𝑌 + 1 ) ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 0 < ( 𝑌 + 1 ) ) |
| 15 | 14 | gt0ne0d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝑌 + 1 ) ≠ 0 ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) ∧ 𝑖 = ( 𝑌 + 1 ) ) → ( 𝑌 + 1 ) ≠ 0 ) |
| 17 | neeq1 | ⊢ ( 𝑖 = ( 𝑌 + 1 ) → ( 𝑖 ≠ 0 ↔ ( 𝑌 + 1 ) ≠ 0 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) ∧ 𝑖 = ( 𝑌 + 1 ) ) → ( 𝑖 ≠ 0 ↔ ( 𝑌 + 1 ) ≠ 0 ) ) |
| 19 | 16 18 | mpbird | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) ∧ 𝑖 = ( 𝑌 + 1 ) ) → 𝑖 ≠ 0 ) |
| 20 | 19 | neneqd | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) ∧ 𝑖 = ( 𝑌 + 1 ) ) → ¬ 𝑖 = 0 ) |
| 21 | 20 | iffalsed | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) ∧ 𝑖 = ( 𝑌 + 1 ) ) → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = 𝐹 ) |
| 22 | peano2nn0 | ⊢ ( 𝑌 ∈ ℕ0 → ( 𝑌 + 1 ) ∈ ℕ0 ) | |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝑌 + 1 ) ∈ ℕ0 ) |
| 24 | 12 21 23 1 | fvmptd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ‘ ( 𝑌 + 1 ) ) = 𝐹 ) |
| 25 | 5 6 7 11 24 | seqp1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ ( 𝑌 + 1 ) ) = ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) ) |
| 26 | 4 25 | eqtrd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) ) |