This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcovalsuc | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> F e. V ) |
|
| 2 | itcoval | |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) |
|
| 3 | 2 | fveq1d | |- ( F e. V -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` ( Y + 1 ) ) ) |
| 4 | 1 3 | syl | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` ( Y + 1 ) ) ) |
| 5 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 6 | simp2 | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> Y e. NN0 ) |
|
| 7 | eqid | |- ( Y + 1 ) = ( Y + 1 ) |
|
| 8 | 2 | adantr | |- ( ( F e. V /\ Y e. NN0 ) -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) |
| 9 | 8 | fveq1d | |- ( ( F e. V /\ Y e. NN0 ) -> ( ( IterComp ` F ) ` Y ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` Y ) ) |
| 10 | 9 | eqeq1d | |- ( ( F e. V /\ Y e. NN0 ) -> ( ( ( IterComp ` F ) ` Y ) = G <-> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` Y ) = G ) ) |
| 11 | 10 | biimp3a | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` Y ) = G ) |
| 12 | eqidd | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) = ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) |
|
| 13 | nn0p1gt0 | |- ( Y e. NN0 -> 0 < ( Y + 1 ) ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> 0 < ( Y + 1 ) ) |
| 15 | 14 | gt0ne0d | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( Y + 1 ) =/= 0 ) |
| 16 | 15 | adantr | |- ( ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) /\ i = ( Y + 1 ) ) -> ( Y + 1 ) =/= 0 ) |
| 17 | neeq1 | |- ( i = ( Y + 1 ) -> ( i =/= 0 <-> ( Y + 1 ) =/= 0 ) ) |
|
| 18 | 17 | adantl | |- ( ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) /\ i = ( Y + 1 ) ) -> ( i =/= 0 <-> ( Y + 1 ) =/= 0 ) ) |
| 19 | 16 18 | mpbird | |- ( ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) /\ i = ( Y + 1 ) ) -> i =/= 0 ) |
| 20 | 19 | neneqd | |- ( ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) /\ i = ( Y + 1 ) ) -> -. i = 0 ) |
| 21 | 20 | iffalsed | |- ( ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) /\ i = ( Y + 1 ) ) -> if ( i = 0 , ( _I |` dom F ) , F ) = F ) |
| 22 | peano2nn0 | |- ( Y e. NN0 -> ( Y + 1 ) e. NN0 ) |
|
| 23 | 22 | 3ad2ant2 | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( Y + 1 ) e. NN0 ) |
| 24 | 12 21 23 1 | fvmptd | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ` ( Y + 1 ) ) = F ) |
| 25 | 5 6 7 11 24 | seqp1d | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` ( Y + 1 ) ) = ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) ) |
| 26 | 4 25 | eqtrd | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) ) |