This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcovalsucov | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐹 ∘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalsuc | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) ) | |
| 2 | eqidd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) = ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) ) | |
| 3 | coeq2 | ⊢ ( 𝑔 = 𝐺 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝐺 ) ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) ∧ ( 𝑔 = 𝐺 ∧ 𝑗 = 𝐹 ) ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝐺 ) ) |
| 5 | id | ⊢ ( 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) → 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) ) | |
| 6 | fvex | ⊢ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) ∈ V | |
| 7 | 5 6 | eqeltrdi | ⊢ ( 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) → 𝐺 ∈ V ) |
| 8 | 7 | eqcoms | ⊢ ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 → 𝐺 ∈ V ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 𝐺 ∈ V ) |
| 10 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 𝐹 ∈ V ) |
| 12 | 8 | anim2i | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V ) ) |
| 13 | 12 | 3adant2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V ) ) |
| 14 | coexg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
| 16 | 2 4 9 11 15 | ovmpod | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) = ( 𝐹 ∘ 𝐺 ) ) |
| 17 | 1 16 | eqtrd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐹 ∘ 𝐺 ) ) |