This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcoval | ⊢ ( 𝐹 ∈ 𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itco | ⊢ IterComp = ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) ) | |
| 2 | eqidd | ⊢ ( 𝑓 = 𝐹 → 0 = 0 ) | |
| 3 | coeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∘ 𝑔 ) = ( 𝐹 ∘ 𝑔 ) ) | |
| 4 | 3 | mpoeq3dv | ⊢ ( 𝑓 = 𝐹 → ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) ) |
| 5 | dmeq | ⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) | |
| 6 | 5 | reseq2d | ⊢ ( 𝑓 = 𝐹 → ( I ↾ dom 𝑓 ) = ( I ↾ dom 𝐹 ) ) |
| 7 | id | ⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) | |
| 8 | 6 7 | ifeq12d | ⊢ ( 𝑓 = 𝐹 → if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) = if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) |
| 9 | 8 | mpteq2dv | ⊢ ( 𝑓 = 𝐹 → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) |
| 10 | 2 4 9 | seqeq123d | ⊢ ( 𝑓 = 𝐹 → seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) |
| 11 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 12 | seqex | ⊢ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ∈ V | |
| 13 | 12 | a1i | ⊢ ( 𝐹 ∈ 𝑉 → seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ∈ V ) |
| 14 | 1 10 11 13 | fvmptd3 | ⊢ ( 𝐹 ∈ 𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) |