This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of units in a ring, that is, all elements with a left and right multiplicative inverse. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-unit | ⊢ Unit = ( 𝑤 ∈ V ↦ ( ◡ ( ( ∥r ‘ 𝑤 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑤 ) ) ) “ { ( 1r ‘ 𝑤 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cui | ⊢ Unit | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | cdsr | ⊢ ∥r | |
| 4 | 1 | cv | ⊢ 𝑤 |
| 5 | 4 3 | cfv | ⊢ ( ∥r ‘ 𝑤 ) |
| 6 | coppr | ⊢ oppr | |
| 7 | 4 6 | cfv | ⊢ ( oppr ‘ 𝑤 ) |
| 8 | 7 3 | cfv | ⊢ ( ∥r ‘ ( oppr ‘ 𝑤 ) ) |
| 9 | 5 8 | cin | ⊢ ( ( ∥r ‘ 𝑤 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑤 ) ) ) |
| 10 | 9 | ccnv | ⊢ ◡ ( ( ∥r ‘ 𝑤 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑤 ) ) ) |
| 11 | cur | ⊢ 1r | |
| 12 | 4 11 | cfv | ⊢ ( 1r ‘ 𝑤 ) |
| 13 | 12 | csn | ⊢ { ( 1r ‘ 𝑤 ) } |
| 14 | 10 13 | cima | ⊢ ( ◡ ( ( ∥r ‘ 𝑤 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑤 ) ) ) “ { ( 1r ‘ 𝑤 ) } ) |
| 15 | 1 2 14 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ( ◡ ( ( ∥r ‘ 𝑤 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑤 ) ) ) “ { ( 1r ‘ 𝑤 ) } ) ) |
| 16 | 0 15 | wceq | ⊢ Unit = ( 𝑤 ∈ V ↦ ( ◡ ( ( ∥r ‘ 𝑤 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑤 ) ) ) “ { ( 1r ‘ 𝑤 ) } ) ) |