This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isumcl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| summulc.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | isummulc2 | ⊢ ( 𝜑 → ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 5 | isumcl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | summulc.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 7 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) ) | |
| 8 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 9 | 8 4 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐵 · 𝐴 ) ∈ ℂ ) |
| 10 | 9 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) : 𝑍 ⟶ ℂ ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 12 | 1 2 3 4 5 | isumclim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 13 | 3 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 14 | 13 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 15 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ) |
| 17 | 16 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 18 | 14 17 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) | |
| 20 | ovex | ⊢ ( 𝐵 · 𝐴 ) ∈ V | |
| 21 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) | |
| 22 | 21 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ ( 𝐵 · 𝐴 ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · 𝐴 ) ) |
| 23 | 19 20 22 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · 𝐴 ) ) |
| 24 | 3 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐵 · 𝐴 ) ) |
| 25 | 23 24 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 26 | 25 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 27 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) | |
| 28 | 27 | nfeq1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) |
| 29 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) ) | |
| 30 | 15 | oveq2d | ⊢ ( 𝑘 = 𝑚 → ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 31 | 29 30 | eqeq12d | ⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) ↔ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 32 | 28 31 | rspc | ⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 33 | 26 32 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 34 | 1 2 6 12 18 33 | isermulc2 | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ) ⇝ ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) ) |
| 35 | 1 2 7 11 34 | isumclim | ⊢ ( 𝜑 → Σ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) ) |
| 36 | sumfc | ⊢ Σ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) | |
| 37 | 35 36 | eqtr3di | ⊢ ( 𝜑 → ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) ) |