This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isumcl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| summulc.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | isummulc1 | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑍 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑍 ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 5 | isumcl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | summulc.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 7 | 1 2 3 4 5 6 | isummulc2 | ⊢ ( 𝜑 → ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) ) |
| 8 | 1 2 3 4 5 | isumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
| 9 | 8 6 | mulcomd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑍 𝐴 · 𝐵 ) = ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) ) |
| 10 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 11 | 4 10 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 12 | 11 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) ) |
| 13 | 7 9 12 | 3eqtr4d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑍 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑍 ( 𝐴 · 𝐵 ) ) |