This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of one direction of 19.37v . (The other direction holds iff A is nonempty, see r19.37zv .) (Contributed by NM, 2-Apr-2004) Reduce axiom usage. (Revised by Wolf Lammen, 18-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.37v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 2 | 1 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 3 | r19.35 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 4 | 3 | biimpi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 5 | 2 4 | syl5 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |