This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reformulate the G function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ucnprima.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| ucnprima.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | ||
| ucnprima.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) | ||
| ucnprima.4 | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | ||
| ucnprima.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) | ||
| Assertion | ucnimalem | ⊢ 𝐺 = ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 2 | ucnprima.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | |
| 3 | ucnprima.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) | |
| 4 | ucnprima.4 | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | |
| 5 | ucnprima.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) | |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 6 7 | op1std | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑝 ) = 𝑥 ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 10 | 6 7 | op2ndd | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑝 ) = 𝑦 ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 12 | 9 11 | opeq12d | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
| 13 | 12 | mpompt | ⊢ ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
| 14 | 5 13 | eqtr4i | ⊢ 𝐺 = ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |