This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isubgr0uhgr | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr ∅ ) = 〈 ∅ , ∅ 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | ⊢ ∅ ⊆ ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 4 | 2 3 | isisubgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ∅ ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ∅ ) = 〈 ∅ , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) 〉 ) |
| 5 | 1 4 | mpan2 | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr ∅ ) = 〈 ∅ , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) 〉 ) |
| 6 | inrab2 | ⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ∩ dom ( iEdg ‘ 𝐺 ) ) = { 𝑥 ∈ ( dom ( iEdg ‘ 𝐺 ) ∩ dom ( iEdg ‘ 𝐺 ) ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } | |
| 7 | inidm | ⊢ ( dom ( iEdg ‘ 𝐺 ) ∩ dom ( iEdg ‘ 𝐺 ) ) = dom ( iEdg ‘ 𝐺 ) | |
| 8 | 7 | rabeqi | ⊢ { 𝑥 ∈ ( dom ( iEdg ‘ 𝐺 ) ∩ dom ( iEdg ‘ 𝐺 ) ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } |
| 9 | ss0b | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) | |
| 10 | 8 9 | rabbieq | ⊢ { 𝑥 ∈ ( dom ( iEdg ‘ 𝐺 ) ∩ dom ( iEdg ‘ 𝐺 ) ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } |
| 11 | 6 10 | eqtri | ⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ∩ dom ( iEdg ‘ 𝐺 ) ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } |
| 12 | 11 | ineqcomi | ⊢ ( dom ( iEdg ‘ 𝐺 ) ∩ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } |
| 13 | 2 3 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 14 | ffvelcdm | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) | |
| 15 | eldifsni | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ≠ ∅ ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ≠ ∅ ) |
| 17 | 16 | neneqd | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ¬ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) |
| 18 | 13 17 | sylan | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ¬ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) |
| 19 | 18 | ralrimiva | ⊢ ( 𝐺 ∈ UHGraph → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) |
| 20 | rabeq0 | ⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } = ∅ ↔ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) | |
| 21 | 19 20 | sylibr | ⊢ ( 𝐺 ∈ UHGraph → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } = ∅ ) |
| 22 | 12 21 | eqtrid | ⊢ ( 𝐺 ∈ UHGraph → ( dom ( iEdg ‘ 𝐺 ) ∩ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ) |
| 23 | 3 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 24 | 23 | funfnd | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 25 | fnresdisj | ⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( ( dom ( iEdg ‘ 𝐺 ) ∩ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ↔ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( ( dom ( iEdg ‘ 𝐺 ) ∩ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ↔ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ) ) |
| 27 | 22 26 | mpbid | ⊢ ( 𝐺 ∈ UHGraph → ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ) |
| 28 | 27 | opeq2d | ⊢ ( 𝐺 ∈ UHGraph → 〈 ∅ , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) 〉 = 〈 ∅ , ∅ 〉 ) |
| 29 | 5 28 | eqtrd | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr ∅ ) = 〈 ∅ , ∅ 〉 ) |