This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isubgr0uhgr | |- ( G e. UHGraph -> ( G ISubGr (/) ) = <. (/) , (/) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ ( Vtx ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 4 | 2 3 | isisubgr | |- ( ( G e. UHGraph /\ (/) C_ ( Vtx ` G ) ) -> ( G ISubGr (/) ) = <. (/) , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) >. ) |
| 5 | 1 4 | mpan2 | |- ( G e. UHGraph -> ( G ISubGr (/) ) = <. (/) , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) >. ) |
| 6 | inrab2 | |- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } i^i dom ( iEdg ` G ) ) = { x e. ( dom ( iEdg ` G ) i^i dom ( iEdg ` G ) ) | ( ( iEdg ` G ) ` x ) C_ (/) } |
|
| 7 | inidm | |- ( dom ( iEdg ` G ) i^i dom ( iEdg ` G ) ) = dom ( iEdg ` G ) |
|
| 8 | 7 | rabeqi | |- { x e. ( dom ( iEdg ` G ) i^i dom ( iEdg ` G ) ) | ( ( iEdg ` G ) ` x ) C_ (/) } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } |
| 9 | ss0b | |- ( ( ( iEdg ` G ) ` x ) C_ (/) <-> ( ( iEdg ` G ) ` x ) = (/) ) |
|
| 10 | 8 9 | rabbieq | |- { x e. ( dom ( iEdg ` G ) i^i dom ( iEdg ` G ) ) | ( ( iEdg ` G ) ` x ) C_ (/) } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } |
| 11 | 6 10 | eqtri | |- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } i^i dom ( iEdg ` G ) ) = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } |
| 12 | 11 | ineqcomi | |- ( dom ( iEdg ` G ) i^i { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } |
| 13 | 2 3 | uhgrf | |- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 14 | ffvelcdm | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) /\ x e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` x ) e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |
|
| 15 | eldifsni | |- ( ( ( iEdg ` G ) ` x ) e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( iEdg ` G ) ` x ) =/= (/) ) |
|
| 16 | 14 15 | syl | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) /\ x e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` x ) =/= (/) ) |
| 17 | 16 | neneqd | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) /\ x e. dom ( iEdg ` G ) ) -> -. ( ( iEdg ` G ) ` x ) = (/) ) |
| 18 | 13 17 | sylan | |- ( ( G e. UHGraph /\ x e. dom ( iEdg ` G ) ) -> -. ( ( iEdg ` G ) ` x ) = (/) ) |
| 19 | 18 | ralrimiva | |- ( G e. UHGraph -> A. x e. dom ( iEdg ` G ) -. ( ( iEdg ` G ) ` x ) = (/) ) |
| 20 | rabeq0 | |- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } = (/) <-> A. x e. dom ( iEdg ` G ) -. ( ( iEdg ` G ) ` x ) = (/) ) |
|
| 21 | 19 20 | sylibr | |- ( G e. UHGraph -> { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } = (/) ) |
| 22 | 12 21 | eqtrid | |- ( G e. UHGraph -> ( dom ( iEdg ` G ) i^i { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) ) |
| 23 | 3 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 24 | 23 | funfnd | |- ( G e. UHGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 25 | fnresdisj | |- ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( ( dom ( iEdg ` G ) i^i { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) <-> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) ) ) |
|
| 26 | 24 25 | syl | |- ( G e. UHGraph -> ( ( dom ( iEdg ` G ) i^i { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) <-> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) ) ) |
| 27 | 22 26 | mpbid | |- ( G e. UHGraph -> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) ) |
| 28 | 27 | opeq2d | |- ( G e. UHGraph -> <. (/) , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) >. = <. (/) , (/) >. ) |
| 29 | 5 28 | eqtrd | |- ( G e. UHGraph -> ( G ISubGr (/) ) = <. (/) , (/) >. ) |