This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inrab2 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∣ 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 2 | abid1 | ⊢ 𝐵 = { 𝑥 ∣ 𝑥 ∈ 𝐵 } | |
| 3 | 1 2 | ineq12i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ 𝐵 ) = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∩ { 𝑥 ∣ 𝑥 ∈ 𝐵 } ) |
| 4 | df-rab | ⊢ { 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝜑 ) } | |
| 5 | inab | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∩ { 𝑥 ∣ 𝑥 ∈ 𝐵 } ) = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐵 ) } | |
| 6 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 7 | 6 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ) |
| 8 | an32 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐵 ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 10 | 9 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝜑 ) } = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 ∈ 𝐵 ) } |
| 11 | 5 10 | eqtr4i | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∩ { 𝑥 ∣ 𝑥 ∈ 𝐵 } ) = { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝜑 ) } |
| 12 | 4 11 | eqtr4i | ⊢ { 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∣ 𝜑 } = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∩ { 𝑥 ∣ 𝑥 ∈ 𝐵 } ) |
| 13 | 3 12 | eqtr4i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∣ 𝜑 } |