This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isisubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isisubgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | isisubgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isisubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isisubgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | elex | ⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 𝐺 ∈ V ) |
| 5 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 6 | 5 | a1i | ⊢ ( 𝑆 ⊆ 𝑉 → 𝑉 ∈ V ) |
| 7 | id | ⊢ ( 𝑆 ⊆ 𝑉 → 𝑆 ⊆ 𝑉 ) | |
| 8 | 6 7 | sselpwd | ⊢ ( 𝑆 ⊆ 𝑉 → 𝑆 ∈ 𝒫 𝑉 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ∈ 𝒫 𝑉 ) |
| 10 | opex | ⊢ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ∈ V | |
| 11 | 10 | a1i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ∈ V ) |
| 12 | simpr | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → 𝑣 = 𝑆 ) | |
| 13 | fvexd | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ( iEdg ‘ 𝑔 ) ∈ V ) | |
| 14 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) | |
| 15 | 14 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = 𝐸 ) |
| 16 | 15 | eqeq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑒 = ( iEdg ‘ 𝑔 ) ↔ 𝑒 = 𝐸 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ( 𝑒 = ( iEdg ‘ 𝑔 ) ↔ 𝑒 = 𝐸 ) ) |
| 18 | simpr | ⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → 𝑒 = 𝐸 ) | |
| 19 | dmeq | ⊢ ( 𝑒 = 𝐸 → dom 𝑒 = dom 𝐸 ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → dom 𝑒 = dom 𝐸 ) |
| 21 | fveq1 | ⊢ ( 𝑒 = 𝐸 → ( 𝑒 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑥 ) ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → ( 𝑒 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑥 ) ) |
| 23 | simpl | ⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → 𝑣 = 𝑆 ) | |
| 24 | 22 23 | sseq12d | ⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → ( ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 ↔ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 ) ) |
| 25 | 20 24 | rabeqbidv | ⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } = { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) |
| 26 | 18 25 | reseq12d | ⊢ ( ( 𝑣 = 𝑆 ∧ 𝑒 = 𝐸 ) → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 27 | 26 | ex | ⊢ ( 𝑣 = 𝑆 → ( 𝑒 = 𝐸 → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ( 𝑒 = 𝐸 → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) ) |
| 29 | 17 28 | sylbid | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ( 𝑒 = ( iEdg ‘ 𝑔 ) → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) ∧ 𝑒 = ( iEdg ‘ 𝑔 ) ) → ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 31 | 13 30 | csbied | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) = ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 32 | 12 31 | opeq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑣 = 𝑆 ) → 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
| 33 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) | |
| 34 | 33 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
| 35 | 34 | pweqd | ⊢ ( 𝑔 = 𝐺 → 𝒫 ( Vtx ‘ 𝑔 ) = 𝒫 𝑉 ) |
| 36 | df-isubgr | ⊢ ISubGr = ( 𝑔 ∈ V , 𝑣 ∈ 𝒫 ( Vtx ‘ 𝑔 ) ↦ 〈 𝑣 , ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑒 ↾ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) ⊆ 𝑣 } ) 〉 ) | |
| 37 | 32 35 36 | ovmpox | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ∧ 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ∈ V ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |
| 38 | 4 9 11 37 | syl3anc | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) = 〈 𝑆 , ( 𝐸 ↾ { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) ⊆ 𝑆 } ) 〉 ) |