This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A space is T_1 iff every point is the only point in the intersection of all open sets containing that point. (Contributed by Jeff Hankins, 31-Jan-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ist1-3 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } = { 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist1-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) | |
| 2 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 3 | eleq2 | ⊢ ( 𝑜 = 𝑋 → ( 𝑥 ∈ 𝑜 ↔ 𝑥 ∈ 𝑋 ) ) | |
| 4 | 3 | intminss | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑥 ∈ 𝑋 ) → ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ⊆ 𝑋 ) |
| 5 | 2 4 | sylan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ⊆ 𝑋 ) |
| 6 | 5 | sselda | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ) → 𝑦 ∈ 𝑋 ) |
| 7 | biimt | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝑦 ∈ { 𝑥 } ↔ ( 𝑦 ∈ 𝑋 → 𝑦 ∈ { 𝑥 } ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ) → ( 𝑦 ∈ { 𝑥 } ↔ ( 𝑦 ∈ 𝑋 → 𝑦 ∈ { 𝑥 } ) ) ) |
| 9 | 8 | ralbidva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } 𝑦 ∈ { 𝑥 } ↔ ∀ 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ( 𝑦 ∈ 𝑋 → 𝑦 ∈ { 𝑥 } ) ) ) |
| 10 | id | ⊢ ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑜 ) | |
| 11 | 10 | rgenw | ⊢ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑜 ) |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | 12 | elintrab | ⊢ ( 𝑥 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑜 ) ) |
| 14 | 11 13 | mpbir | ⊢ 𝑥 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } |
| 15 | snssi | ⊢ ( 𝑥 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } → { 𝑥 } ⊆ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ) | |
| 16 | 14 15 | ax-mp | ⊢ { 𝑥 } ⊆ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } |
| 17 | eqss | ⊢ ( ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } = { 𝑥 } ↔ ( ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ⊆ { 𝑥 } ∧ { 𝑥 } ⊆ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ) ) | |
| 18 | 16 17 | mpbiran2 | ⊢ ( ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } = { 𝑥 } ↔ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ⊆ { 𝑥 } ) |
| 19 | dfss3 | ⊢ ( ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ⊆ { 𝑥 } ↔ ∀ 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } 𝑦 ∈ { 𝑥 } ) | |
| 20 | 18 19 | bitri | ⊢ ( ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } = { 𝑥 } ↔ ∀ 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } 𝑦 ∈ { 𝑥 } ) |
| 21 | vex | ⊢ 𝑦 ∈ V | |
| 22 | 21 | elintrab | ⊢ ( 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) |
| 23 | velsn | ⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 ) | |
| 24 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 25 | 23 24 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑥 = 𝑦 ) |
| 26 | 22 25 | imbi12i | ⊢ ( ( 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } → 𝑦 ∈ { 𝑥 } ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) |
| 27 | 26 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑋 ( 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } → 𝑦 ∈ { 𝑥 } ) ↔ ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) |
| 28 | ralcom3 | ⊢ ( ∀ 𝑦 ∈ 𝑋 ( 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } → 𝑦 ∈ { 𝑥 } ) ↔ ∀ 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ( 𝑦 ∈ 𝑋 → 𝑦 ∈ { 𝑥 } ) ) | |
| 29 | 27 28 | bitr3i | ⊢ ( ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } ( 𝑦 ∈ 𝑋 → 𝑦 ∈ { 𝑥 } ) ) |
| 30 | 9 20 29 | 3bitr4g | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 31 | 30 | ralbidva | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } = { 𝑥 } ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 32 | 1 31 | bitr4d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∩ { 𝑜 ∈ 𝐽 ∣ 𝑥 ∈ 𝑜 } = { 𝑥 } ) ) |