This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of a T_1 topology under an injective map is T_1. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnt1 | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ Fre ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ Top ) |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3 4 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 7 | 6 | ffnd | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 Fn ∪ 𝐽 ) |
| 8 | fnsnfv | ⊢ ( ( 𝐹 Fn ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } = ( 𝐹 “ { 𝑥 } ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } = ( 𝐹 “ { 𝑥 } ) ) |
| 10 | 9 | imaeq2d | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 } ) ) ) |
| 11 | simpl2 | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) | |
| 12 | 6 | fdmd | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 13 | f1dm | ⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → dom 𝐹 = 𝑋 ) |
| 15 | 12 14 | eqtr3d | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∪ 𝐽 = 𝑋 ) |
| 16 | 15 | eleq2d | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ ∪ 𝐽 ↔ 𝑥 ∈ 𝑋 ) ) |
| 17 | 16 | biimpa | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ 𝑋 ) |
| 18 | 17 | snssd | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → { 𝑥 } ⊆ 𝑋 ) |
| 19 | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ { 𝑥 } ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 } ) ) = { 𝑥 } ) | |
| 20 | 11 18 19 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑥 } ) ) = { 𝑥 } ) |
| 21 | 10 20 | eqtrd | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) = { 𝑥 } ) |
| 22 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 23 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐾 ∈ Fre ) | |
| 24 | 6 | ffvelcdmda | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝐾 ) |
| 25 | 4 | t1sncld | ⊢ ( ( 𝐾 ∈ Fre ∧ ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝐾 ) → { ( 𝐹 ‘ 𝑥 ) } ∈ ( Clsd ‘ 𝐾 ) ) |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } ∈ ( Clsd ‘ 𝐾 ) ) |
| 27 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ { ( 𝐹 ‘ 𝑥 ) } ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 28 | 22 26 27 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 29 | 21 28 | eqeltrrd | ⊢ ( ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ∪ 𝐽 ) → { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑥 ∈ ∪ 𝐽 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 31 | 3 | ist1 | ⊢ ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝐽 { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 32 | 2 30 31 | sylanbrc | ⊢ ( ( 𝐾 ∈ Fre ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ Fre ) |