This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004) (Proof shortened by Wolf Lammen, 22-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralcom3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 2 | 1 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |