This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The submonoid predicate. Analogous to issubg . (Contributed by AV, 1-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubmndb.b | |- B = ( Base ` G ) |
|
| issubmndb.z | |- .0. = ( 0g ` G ) |
||
| Assertion | issubmndb | |- ( S e. ( SubMnd ` G ) <-> ( ( G e. Mnd /\ ( G |`s S ) e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubmndb.b | |- B = ( Base ` G ) |
|
| 2 | issubmndb.z | |- .0. = ( 0g ` G ) |
|
| 3 | eqid | |- ( G |`s S ) = ( G |`s S ) |
|
| 4 | 1 2 3 | issubm2 | |- ( G e. Mnd -> ( S e. ( SubMnd ` G ) <-> ( S C_ B /\ .0. e. S /\ ( G |`s S ) e. Mnd ) ) ) |
| 5 | 3anrot | |- ( ( ( G |`s S ) e. Mnd /\ S C_ B /\ .0. e. S ) <-> ( S C_ B /\ .0. e. S /\ ( G |`s S ) e. Mnd ) ) |
|
| 6 | 3anass | |- ( ( ( G |`s S ) e. Mnd /\ S C_ B /\ .0. e. S ) <-> ( ( G |`s S ) e. Mnd /\ ( S C_ B /\ .0. e. S ) ) ) |
|
| 7 | 5 6 | bitr3i | |- ( ( S C_ B /\ .0. e. S /\ ( G |`s S ) e. Mnd ) <-> ( ( G |`s S ) e. Mnd /\ ( S C_ B /\ .0. e. S ) ) ) |
| 8 | 4 7 | bitrdi | |- ( G e. Mnd -> ( S e. ( SubMnd ` G ) <-> ( ( G |`s S ) e. Mnd /\ ( S C_ B /\ .0. e. S ) ) ) ) |
| 9 | 8 | pm5.32i | |- ( ( G e. Mnd /\ S e. ( SubMnd ` G ) ) <-> ( G e. Mnd /\ ( ( G |`s S ) e. Mnd /\ ( S C_ B /\ .0. e. S ) ) ) ) |
| 10 | submrcl | |- ( S e. ( SubMnd ` G ) -> G e. Mnd ) |
|
| 11 | 10 | pm4.71ri | |- ( S e. ( SubMnd ` G ) <-> ( G e. Mnd /\ S e. ( SubMnd ` G ) ) ) |
| 12 | anass | |- ( ( ( G e. Mnd /\ ( G |`s S ) e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) <-> ( G e. Mnd /\ ( ( G |`s S ) e. Mnd /\ ( S C_ B /\ .0. e. S ) ) ) ) |
|
| 13 | 9 11 12 | 3bitr4i | |- ( S e. ( SubMnd ` G ) <-> ( ( G e. Mnd /\ ( G |`s S ) e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) ) |