This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| issubc.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| issubc.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| issubc.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| issubc.s | ⊢ ( 𝜑 → 𝑆 = dom dom 𝐽 ) | ||
| Assertion | issubc | ⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| 2 | issubc.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 3 | issubc.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | issubc.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | issubc.s | ⊢ ( 𝜑 → 𝑆 = dom dom 𝐽 ) | |
| 6 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) → 𝐶 ∈ Cat ) | |
| 7 | sscpwex | ⊢ { 𝑗 ∣ 𝑗 ⊆cat ( Homf ‘ 𝑐 ) } ∈ V | |
| 8 | simpl | ⊢ ( ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) → 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ) | |
| 9 | 8 | ss2abi | ⊢ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ⊆ { 𝑗 ∣ 𝑗 ⊆cat ( Homf ‘ 𝑐 ) } |
| 10 | 7 9 | ssexi | ⊢ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ∈ V |
| 11 | 10 | csbex | ⊢ ⦋ 𝐶 / 𝑐 ⦌ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ∈ V |
| 12 | 11 | a1i | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) → ⦋ 𝐶 / 𝑐 ⦌ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ∈ V ) |
| 13 | df-subc | ⊢ Subcat = ( 𝑐 ∈ Cat ↦ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ) | |
| 14 | 13 | fvmpts | ⊢ ( ( 𝐶 ∈ Cat ∧ ⦋ 𝐶 / 𝑐 ⦌ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ∈ V ) → ( Subcat ‘ 𝐶 ) = ⦋ 𝐶 / 𝑐 ⦌ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ) |
| 15 | 6 12 14 | syl2anc | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) → ( Subcat ‘ 𝐶 ) = ⦋ 𝐶 / 𝑐 ⦌ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ) |
| 16 | 15 | eleq2d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ 𝐽 ∈ ⦋ 𝐶 / 𝑐 ⦌ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ) ) |
| 17 | sbcel2 | ⊢ ( [ 𝐶 / 𝑐 ] 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ↔ 𝐽 ∈ ⦋ 𝐶 / 𝑐 ⦌ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ) | |
| 18 | 17 | a1i | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) → ( [ 𝐶 / 𝑐 ] 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ↔ 𝐽 ∈ ⦋ 𝐶 / 𝑐 ⦌ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ) ) |
| 19 | elex | ⊢ ( 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } → 𝐽 ∈ V ) | |
| 20 | 19 | a1i | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) → ( 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } → 𝐽 ∈ V ) ) |
| 21 | sscrel | ⊢ Rel ⊆cat | |
| 22 | 21 | brrelex1i | ⊢ ( 𝐽 ⊆cat 𝐻 → 𝐽 ∈ V ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) → 𝐽 ∈ V ) |
| 24 | 23 | a1i | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) → ( ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) → 𝐽 ∈ V ) ) |
| 25 | df-sbc | ⊢ ( [ 𝐽 / 𝑗 ] ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ↔ 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ) | |
| 26 | simpr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝐽 ∈ V ) → 𝐽 ∈ V ) | |
| 27 | simpr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝐽 ) | |
| 28 | simpr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) → 𝑐 = 𝐶 ) | |
| 29 | 28 | fveq2d | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) → ( Homf ‘ 𝑐 ) = ( Homf ‘ 𝐶 ) ) |
| 30 | 29 1 | eqtr4di | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) → ( Homf ‘ 𝑐 ) = 𝐻 ) |
| 31 | 30 | adantr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → ( Homf ‘ 𝑐 ) = 𝐻 ) |
| 32 | 27 31 | breq12d | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ↔ 𝐽 ⊆cat 𝐻 ) ) |
| 33 | vex | ⊢ 𝑗 ∈ V | |
| 34 | 33 | dmex | ⊢ dom 𝑗 ∈ V |
| 35 | 34 | dmex | ⊢ dom dom 𝑗 ∈ V |
| 36 | 35 | a1i | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → dom dom 𝑗 ∈ V ) |
| 37 | 27 | dmeqd | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → dom 𝑗 = dom 𝐽 ) |
| 38 | 37 | dmeqd | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → dom dom 𝑗 = dom dom 𝐽 ) |
| 39 | simpllr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → 𝑆 = dom dom 𝐽 ) | |
| 40 | 38 39 | eqtr4d | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → dom dom 𝑗 = 𝑆 ) |
| 41 | simpr | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) | |
| 42 | simpllr | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → 𝑐 = 𝐶 ) | |
| 43 | 42 | fveq2d | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
| 44 | 43 2 | eqtr4di | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( Id ‘ 𝑐 ) = 1 ) |
| 45 | 44 | fveq1d | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
| 46 | simplr | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → 𝑗 = 𝐽 ) | |
| 47 | 46 | oveqd | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( 𝑥 𝑗 𝑥 ) = ( 𝑥 𝐽 𝑥 ) ) |
| 48 | 45 47 | eleq12d | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ↔ ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
| 49 | 46 | oveqd | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( 𝑥 𝑗 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) |
| 50 | 46 | oveqd | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( 𝑦 𝑗 𝑧 ) = ( 𝑦 𝐽 𝑧 ) ) |
| 51 | 42 | fveq2d | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
| 52 | 51 3 | eqtr4di | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( comp ‘ 𝑐 ) = · ) |
| 53 | 52 | oveqd | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) ) |
| 54 | 53 | oveqd | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) |
| 55 | 46 | oveqd | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( 𝑥 𝑗 𝑧 ) = ( 𝑥 𝐽 𝑧 ) ) |
| 56 | 54 55 | eleq12d | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 57 | 50 56 | raleqbidv | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 58 | 49 57 | raleqbidv | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 59 | 41 58 | raleqbidv | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 60 | 41 59 | raleqbidv | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) |
| 61 | 48 60 | anbi12d | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ↔ ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
| 62 | 41 61 | raleqbidv | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
| 63 | 36 40 62 | sbcied2 | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → ( [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
| 64 | 32 63 | anbi12d | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝑗 = 𝐽 ) → ( ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 65 | 64 | adantlr | ⊢ ( ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝐽 ∈ V ) ∧ 𝑗 = 𝐽 ) → ( ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 66 | 26 65 | sbcied | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝐽 ∈ V ) → ( [ 𝐽 / 𝑗 ] ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 67 | 25 66 | bitr3id | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) ∧ 𝐽 ∈ V ) → ( 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 68 | 67 | ex | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) → ( 𝐽 ∈ V → ( 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) ) |
| 69 | 20 24 68 | pm5.21ndd | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) ∧ 𝑐 = 𝐶 ) → ( 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 70 | 6 69 | sbcied | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) → ( [ 𝐶 / 𝑐 ] 𝐽 ∈ { 𝑗 ∣ ( 𝑗 ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom 𝑗 / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑗 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 𝑗 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑗 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑗 𝑧 ) ) ) } ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 71 | 16 18 70 | 3bitr2d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 = dom dom 𝐽 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 72 | 4 5 71 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |