This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An analogue of pwex for the subcategory subset relation: The collection of subcategory subsets of a given set J is a set. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscpwex | ⊢ { ℎ ∣ ℎ ⊆cat 𝐽 } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ∈ V | |
| 2 | brssc | ⊢ ( ℎ ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) | |
| 3 | simpl | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → 𝐽 Fn ( 𝑡 × 𝑡 ) ) | |
| 4 | vex | ⊢ 𝑡 ∈ V | |
| 5 | 4 4 | xpex | ⊢ ( 𝑡 × 𝑡 ) ∈ V |
| 6 | fnex | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑡 × 𝑡 ) ∈ V ) → 𝐽 ∈ V ) | |
| 7 | 3 5 6 | sylancl | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → 𝐽 ∈ V ) |
| 8 | rnexg | ⊢ ( 𝐽 ∈ V → ran 𝐽 ∈ V ) | |
| 9 | uniexg | ⊢ ( ran 𝐽 ∈ V → ∪ ran 𝐽 ∈ V ) | |
| 10 | pwexg | ⊢ ( ∪ ran 𝐽 ∈ V → 𝒫 ∪ ran 𝐽 ∈ V ) | |
| 11 | 7 8 9 10 | 4syl | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → 𝒫 ∪ ran 𝐽 ∈ V ) |
| 12 | fndm | ⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) |
| 14 | 13 5 | eqeltrdi | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → dom 𝐽 ∈ V ) |
| 15 | ss2ixp | ⊢ ( ∀ 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ 𝒫 ∪ ran 𝐽 → X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ∪ ran 𝐽 ) | |
| 16 | fvssunirn | ⊢ ( 𝐽 ‘ 𝑥 ) ⊆ ∪ ran 𝐽 | |
| 17 | 16 | sspwi | ⊢ 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ 𝒫 ∪ ran 𝐽 |
| 18 | 17 | a1i | ⊢ ( 𝑥 ∈ ( 𝑠 × 𝑠 ) → 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ 𝒫 ∪ ran 𝐽 ) |
| 19 | 15 18 | mprg | ⊢ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ⊆ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ∪ ran 𝐽 |
| 20 | simprr | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) | |
| 21 | 19 20 | sselid | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ∪ ran 𝐽 ) |
| 22 | vex | ⊢ ℎ ∈ V | |
| 23 | 22 | elixpconst | ⊢ ( ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ∪ ran 𝐽 ↔ ℎ : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ∪ ran 𝐽 ) |
| 24 | 21 23 | sylib | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ℎ : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ∪ ran 𝐽 ) |
| 25 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 𝑡 → 𝑠 ⊆ 𝑡 ) | |
| 26 | 25 | ad2antrl | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → 𝑠 ⊆ 𝑡 ) |
| 27 | xpss12 | ⊢ ( ( 𝑠 ⊆ 𝑡 ∧ 𝑠 ⊆ 𝑡 ) → ( 𝑠 × 𝑠 ) ⊆ ( 𝑡 × 𝑡 ) ) | |
| 28 | 26 26 27 | syl2anc | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ( 𝑠 × 𝑠 ) ⊆ ( 𝑡 × 𝑡 ) ) |
| 29 | 28 13 | sseqtrrd | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ( 𝑠 × 𝑠 ) ⊆ dom 𝐽 ) |
| 30 | elpm2r | ⊢ ( ( ( 𝒫 ∪ ran 𝐽 ∈ V ∧ dom 𝐽 ∈ V ) ∧ ( ℎ : ( 𝑠 × 𝑠 ) ⟶ 𝒫 ∪ ran 𝐽 ∧ ( 𝑠 × 𝑠 ) ⊆ dom 𝐽 ) ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) | |
| 31 | 11 14 24 29 30 | syl22anc | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑠 ∈ 𝒫 𝑡 ∧ ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 32 | 31 | rexlimdvaa | ⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → ( ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) ) |
| 33 | 32 | imp | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 34 | 33 | exlimiv | ⊢ ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 35 | 2 34 | sylbi | ⊢ ( ℎ ⊆cat 𝐽 → ℎ ∈ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) ) |
| 36 | 35 | abssi | ⊢ { ℎ ∣ ℎ ⊆cat 𝐽 } ⊆ ( 𝒫 ∪ ran 𝐽 ↑pm dom 𝐽 ) |
| 37 | 1 36 | ssexi | ⊢ { ℎ ∣ ℎ ⊆cat 𝐽 } ∈ V |