This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcel2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcel12 | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 2 | csbconstg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐵 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 4 | 1 3 | bitrid | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 5 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 → 𝐴 ∈ V ) | |
| 6 | 5 | con3i | ⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ) |
| 7 | noel | ⊢ ¬ 𝐵 ∈ ∅ | |
| 8 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) | |
| 9 | 8 | eleq2d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐵 ∈ ∅ ) ) |
| 10 | 7 9 | mtbiri | ⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 11 | 6 10 | 2falsed | ⊢ ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 12 | 4 11 | pm2.61i | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |