This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring that is also a subspace is a subalgebra. The key theorem is islss3 . (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubassa.s | |- S = ( W |`s A ) |
|
| issubassa.l | |- L = ( LSubSp ` W ) |
||
| Assertion | issubassa3 | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubassa.s | |- S = ( W |`s A ) |
|
| 2 | issubassa.l | |- L = ( LSubSp ` W ) |
|
| 3 | 1 | subrgbas | |- ( A e. ( SubRing ` W ) -> A = ( Base ` S ) ) |
| 4 | 3 | ad2antrl | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> A = ( Base ` S ) ) |
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | 1 5 | resssca | |- ( A e. ( SubRing ` W ) -> ( Scalar ` W ) = ( Scalar ` S ) ) |
| 7 | 6 | ad2antrl | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Scalar ` W ) = ( Scalar ` S ) ) |
| 8 | eqidd | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
|
| 9 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 10 | 1 9 | ressvsca | |- ( A e. ( SubRing ` W ) -> ( .s ` W ) = ( .s ` S ) ) |
| 11 | 10 | ad2antrl | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( .s ` W ) = ( .s ` S ) ) |
| 12 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 13 | 1 12 | ressmulr | |- ( A e. ( SubRing ` W ) -> ( .r ` W ) = ( .r ` S ) ) |
| 14 | 13 | ad2antrl | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( .r ` W ) = ( .r ` S ) ) |
| 15 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 16 | simpr | |- ( ( A e. ( SubRing ` W ) /\ A e. L ) -> A e. L ) |
|
| 17 | 1 2 | lsslmod | |- ( ( W e. LMod /\ A e. L ) -> S e. LMod ) |
| 18 | 15 16 17 | syl2an | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. LMod ) |
| 19 | 1 | subrgring | |- ( A e. ( SubRing ` W ) -> S e. Ring ) |
| 20 | 19 | ad2antrl | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. Ring ) |
| 21 | idd | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( x e. ( Base ` ( Scalar ` W ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
|
| 22 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 23 | 22 | subrgss | |- ( A e. ( SubRing ` W ) -> A C_ ( Base ` W ) ) |
| 24 | 23 | ad2antrl | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> A C_ ( Base ` W ) ) |
| 25 | 24 | sseld | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( y e. A -> y e. ( Base ` W ) ) ) |
| 26 | 24 | sseld | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( z e. A -> z e. ( Base ` W ) ) ) |
| 27 | 21 25 26 | 3anim123d | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) -> ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) ) |
| 28 | 27 | imp | |- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) |
| 29 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 30 | 22 5 29 9 12 | assaass | |- ( ( W e. AssAlg /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 31 | 30 | adantlr | |- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 32 | 28 31 | syldan | |- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 33 | 22 5 29 9 12 | assaassr | |- ( ( W e. AssAlg /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 34 | 33 | adantlr | |- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 35 | 28 34 | syldan | |- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
| 36 | 4 7 8 11 14 18 20 32 35 | isassad | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. AssAlg ) |