This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of lifted scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| rnascl.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | ||
| rnascl.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | rnascl | ⊢ ( 𝑊 ∈ AssAlg → ran 𝐴 = ( 𝑁 ‘ { 1 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | rnascl.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | |
| 3 | rnascl.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 7 | 1 4 5 6 2 | asclfval | ⊢ 𝐴 = ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) ) |
| 8 | 7 | rnmpt | ⊢ ran 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } |
| 9 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 10 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 12 | 11 2 | ringidcl | ⊢ ( 𝑊 ∈ Ring → 1 ∈ ( Base ‘ 𝑊 ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝑊 ∈ AssAlg → 1 ∈ ( Base ‘ 𝑊 ) ) |
| 14 | 4 5 11 6 3 | lspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ { 1 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } ) |
| 15 | 9 13 14 | syl2anc | ⊢ ( 𝑊 ∈ AssAlg → ( 𝑁 ‘ { 1 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } ) |
| 16 | 8 15 | eqtr4id | ⊢ ( 𝑊 ∈ AssAlg → ran 𝐴 = ( 𝑁 ‘ { 1 } ) ) |