This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring homomorphisms
isrim
Metamath Proof Explorer
Description: An isomorphism of rings is a bijective homomorphism. (Contributed by AV , 22-Oct-2019) Remove sethood antecedent. (Revised by SN , 12-Jan-2025)
Ref
Expression
Hypotheses
rhmf1o.b
⊢ B = Base R
rhmf1o.c
⊢ C = Base S
Assertion
isrim
⊢ F ∈ R RingIso S ↔ F ∈ R RingHom S ∧ F : B ⟶ 1-1 onto C
Proof
Step
Hyp
Ref
Expression
1
rhmf1o.b
⊢ B = Base R
2
rhmf1o.c
⊢ C = Base S
3
isrim0
⊢ F ∈ R RingIso S ↔ F ∈ R RingHom S ∧ F -1 ∈ S RingHom R
4
1 2
rhmf1o
⊢ F ∈ R RingHom S → F : B ⟶ 1-1 onto C ↔ F -1 ∈ S RingHom R
5
4
bicomd
⊢ F ∈ R RingHom S → F -1 ∈ S RingHom R ↔ F : B ⟶ 1-1 onto C
6
5
pm5.32i
⊢ F ∈ R RingHom S ∧ F -1 ∈ S RingHom R ↔ F ∈ R RingHom S ∧ F : B ⟶ 1-1 onto C
7
3 6
bitri
⊢ F ∈ R RingIso S ↔ F ∈ R RingHom S ∧ F : B ⟶ 1-1 onto C