This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | rhmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 4 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 5 | 3 4 | jca | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑆 ∈ Ring ∧ 𝑅 ∈ Ring ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑆 ∈ Ring ∧ 𝑅 ∈ Ring ) ) |
| 7 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | |
| 8 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 10 | 1 2 | ghmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) ) |
| 11 | 10 | bicomd | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 13 | 7 12 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) |
| 14 | eqidd | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 = 𝐹 ) | |
| 15 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 16 | 15 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 17 | 16 | a1i | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 18 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 19 | 18 2 | mgpbas | ⊢ 𝐶 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 20 | 19 | a1i | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐶 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 21 | 14 17 20 | f1oeq123d | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
| 22 | 21 | biimpa | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 23 | 15 18 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 26 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 27 | 25 26 | mhmf1o | ⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) → ( 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ↔ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) |
| 28 | 27 | bicomd | ⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
| 29 | 24 28 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
| 30 | 22 29 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 31 | 13 30 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ∧ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) |
| 32 | 18 15 | isrhm | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑅 ∈ Ring ) ∧ ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ∧ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) ) |
| 33 | 6 31 32 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) |
| 34 | 1 2 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 36 | 35 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → 𝐹 Fn 𝐵 ) |
| 37 | 2 1 | rhmf | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 38 | 37 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 39 | 38 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → ◡ 𝐹 Fn 𝐶 ) |
| 40 | dff1o4 | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 Fn 𝐵 ∧ ◡ 𝐹 Fn 𝐶 ) ) | |
| 41 | 36 39 40 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
| 42 | 33 41 | impbida | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |