This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psubspset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| psubspset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| psubspset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| psubspset.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| Assertion | psubspset | ⊢ ( 𝐾 ∈ 𝐵 → 𝑆 = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | psubspset.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | psubspset.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | psubspset.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 5 | elex | ⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) | |
| 7 | 6 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 8 | 7 | sseq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ↔ 𝑠 ⊆ 𝐴 ) ) |
| 9 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) | |
| 10 | 9 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
| 11 | 10 | oveqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) = ( 𝑝 ∨ 𝑞 ) ) |
| 12 | 11 | breq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) ↔ 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ∨ 𝑞 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) | |
| 14 | 13 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 15 | 14 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ∨ 𝑞 ) ↔ 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) ) ) |
| 16 | 12 15 | bitrd | ⊢ ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) ↔ 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) ) ) |
| 17 | 16 | imbi1d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ↔ ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) |
| 18 | 7 17 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ↔ ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) |
| 19 | 18 | 2ralbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ↔ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) |
| 20 | 8 19 | anbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) ) |
| 21 | 20 | abbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
| 22 | df-psubsp | ⊢ PSubSp = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) | |
| 23 | 3 | fvexi | ⊢ 𝐴 ∈ V |
| 24 | 23 | pwex | ⊢ 𝒫 𝐴 ∈ V |
| 25 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝐴 ↔ 𝑠 ⊆ 𝐴 ) | |
| 26 | 25 | anbi1i | ⊢ ( ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) ) |
| 27 | 26 | abbii | ⊢ { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } |
| 28 | ssab2 | ⊢ { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ⊆ 𝒫 𝐴 | |
| 29 | 27 28 | eqsstrri | ⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ⊆ 𝒫 𝐴 |
| 30 | 24 29 | ssexi | ⊢ { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ∈ V |
| 31 | 21 22 30 | fvmpt | ⊢ ( 𝐾 ∈ V → ( PSubSp ‘ 𝐾 ) = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
| 32 | 4 31 | eqtrid | ⊢ ( 𝐾 ∈ V → 𝑆 = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
| 33 | 5 32 | syl | ⊢ ( 𝐾 ∈ 𝐵 → 𝑆 = { 𝑠 ∣ ( 𝑠 ⊆ 𝐴 ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ 𝐴 ( 𝑟 ≤ ( 𝑝 ∨ 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |