This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isph.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| isph.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| isph.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| isph.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | isph | ⊢ ( 𝑈 ∈ CPreHilOLD ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isph.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | isph.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | isph.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 4 | isph.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 6 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 7 | 2 6 4 | nvop | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ) |
| 8 | eleq1 | ⊢ ( 𝑈 = 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 → ( 𝑈 ∈ CPreHilOLD ↔ 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ CPreHilOLD ) ) | |
| 9 | 2 | fvexi | ⊢ 𝐺 ∈ V |
| 10 | fvex | ⊢ ( ·𝑠OLD ‘ 𝑈 ) ∈ V | |
| 11 | 4 | fvexi | ⊢ 𝑁 ∈ V |
| 12 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 13 | 12 | isphg | ⊢ ( ( 𝐺 ∈ V ∧ ( ·𝑠OLD ‘ 𝑈 ) ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ CPreHilOLD ↔ ( 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 14 | 9 10 11 13 | mp3an | ⊢ ( 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ CPreHilOLD ↔ ( 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 15 | 1 2 6 3 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑀 𝑦 ) = ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) |
| 16 | 15 | 3expa | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑀 𝑦 ) = ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) |
| 19 | 18 | oveq2d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) ) |
| 20 | 19 | eqeq1d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 21 | 20 | ralbidva | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 22 | 21 | ralbidva | ⊢ ( 𝑈 ∈ NrmCVec → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 23 | 22 | pm5.32i | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 24 | eleq1 | ⊢ ( 𝑈 = 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 → ( 𝑈 ∈ NrmCVec ↔ 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ NrmCVec ) ) | |
| 25 | 24 | anbi1d | ⊢ ( 𝑈 = 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 → ( ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ↔ ( 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 26 | 23 25 | bitr2id | ⊢ ( 𝑈 = 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 → ( ( 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 27 | 14 26 | bitrid | ⊢ ( 𝑈 = 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 → ( 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 ∈ CPreHilOLD ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 28 | 8 27 | bitrd | ⊢ ( 𝑈 = 〈 〈 𝐺 , ( ·𝑠OLD ‘ 𝑈 ) 〉 , 𝑁 〉 → ( 𝑈 ∈ CPreHilOLD ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 29 | 7 28 | syl | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑈 ∈ CPreHilOLD ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 30 | 29 | bianabs | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑈 ∈ CPreHilOLD ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 31 | 5 30 | biadanii | ⊢ ( 𝑈 ∈ CPreHilOLD ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |