This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isph.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| isph.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| isph.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| isph.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | phpar2 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isph.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | isph.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | isph.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 4 | isph.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | 1 2 3 4 | isph | ⊢ ( 𝑈 ∈ CPreHilOLD ↔ ( 𝑈 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝑈 ∈ CPreHilOLD → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 8 | fvoveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) ) |
| 10 | fvoveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) |
| 12 | 9 11 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐴 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 17 | 12 16 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) | |
| 19 | 18 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) |
| 21 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝑀 𝑦 ) = ( 𝐴 𝑀 𝐵 ) ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) |
| 24 | 20 23 | oveq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝐵 ) ) | |
| 26 | 25 | oveq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 27 | 26 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 28 | 27 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 29 | 24 28 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 30 | 17 29 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 31 | 30 | 3adant1 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝑀 𝑦 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 32 | 7 31 | mpd | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝑀 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |