This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a complex inner product space." An inner product space is a normed vector space whose norm satisfies the parallelogram law. The vector (group) addition operation is G , the scalar product is S , and the norm is N . An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isphg.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | isphg | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶 ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ↔ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphg.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | df-ph | ⊢ CPreHilOLD = ( NrmCVec ∩ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) | |
| 3 | 2 | elin2 | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ↔ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ∧ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) ) |
| 4 | rneq | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
| 6 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ) |
| 8 | 7 | oveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) = ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) ) |
| 9 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) = ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) = ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ) |
| 11 | 10 | oveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) |
| 12 | 8 11 | oveq12d | ⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) ) |
| 13 | 12 | eqeq1d | ⊢ ( 𝑔 = 𝐺 → ( ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 14 | 5 13 | raleqbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 15 | 5 14 | raleqbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 16 | oveq | ⊢ ( 𝑠 = 𝑆 → ( - 1 𝑠 𝑦 ) = ( - 1 𝑆 𝑦 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) = ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) = ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 19 | 18 | oveq1d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) |
| 21 | 20 | eqeq1d | ⊢ ( 𝑠 = 𝑆 → ( ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 22 | 21 | 2ralbidv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 23 | fveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) ) |
| 25 | fveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) | |
| 26 | 25 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) |
| 27 | 24 26 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) |
| 28 | fveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑥 ) ) | |
| 29 | 28 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) ) |
| 30 | fveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) | |
| 31 | 30 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) |
| 32 | 29 31 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 34 | 27 33 | eqeq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 35 | 34 | 2ralbidv | ⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 36 | 15 22 35 | eloprabg | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶 ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 37 | 36 | anbi2d | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶 ) → ( ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ∧ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) ↔ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 38 | 3 37 | bitrid | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶 ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ↔ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |