This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isorcl.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| isorcl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| Assertion | isorcl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isorcl.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 2 | isorcl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 3 | elfvne0 | ⊢ ( 𝐹 ∈ ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) → 𝐼 ≠ ∅ ) | |
| 4 | df-ov | ⊢ ( 𝑋 𝐼 𝑌 ) = ( 𝐼 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 5 | 3 4 | eleq2s | ⊢ ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) → 𝐼 ≠ ∅ ) |
| 6 | 1 | neeq1i | ⊢ ( 𝐼 ≠ ∅ ↔ ( Iso ‘ 𝐶 ) ≠ ∅ ) |
| 7 | n0 | ⊢ ( ( Iso ‘ 𝐶 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Iso ‘ 𝐶 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( 𝐼 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Iso ‘ 𝐶 ) ) |
| 9 | 5 8 | sylib | ⊢ ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) → ∃ 𝑥 𝑥 ∈ ( Iso ‘ 𝐶 ) ) |
| 10 | df-iso | ⊢ Iso = ( 𝑐 ∈ Cat ↦ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) ) | |
| 11 | 10 | mptrcl | ⊢ ( 𝑥 ∈ ( Iso ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑥 𝑥 ∈ ( Iso ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 13 | 2 9 12 | 3syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |