This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invrcl.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| invrcl.f | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) | ||
| Assertion | invrcl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrcl.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 2 | invrcl.f | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) | |
| 3 | df-br | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑁 𝑌 ) ) | |
| 4 | df-ov | ⊢ ( 𝑋 𝑁 𝑌 ) = ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 5 | 4 | eleq2i | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑋 𝑁 𝑌 ) ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 7 | elfvne0 | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) → 𝑁 ≠ ∅ ) | |
| 8 | 6 7 | sylbi | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → 𝑁 ≠ ∅ ) |
| 9 | 1 | neeq1i | ⊢ ( 𝑁 ≠ ∅ ↔ ( Inv ‘ 𝐶 ) ≠ ∅ ) |
| 10 | n0 | ⊢ ( ( Inv ‘ 𝐶 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Inv ‘ 𝐶 ) ) | |
| 11 | 9 10 | bitri | ⊢ ( 𝑁 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( Inv ‘ 𝐶 ) ) |
| 12 | 8 11 | sylib | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ∃ 𝑥 𝑥 ∈ ( Inv ‘ 𝐶 ) ) |
| 13 | df-inv | ⊢ Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) ) | |
| 14 | 13 | mptrcl | ⊢ ( 𝑥 ∈ ( Inv ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑥 𝑥 ∈ ( Inv ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 16 | 2 12 15 | 3syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |